

BIOMASS CONVERSION COURSE

Doctoral School EPFL

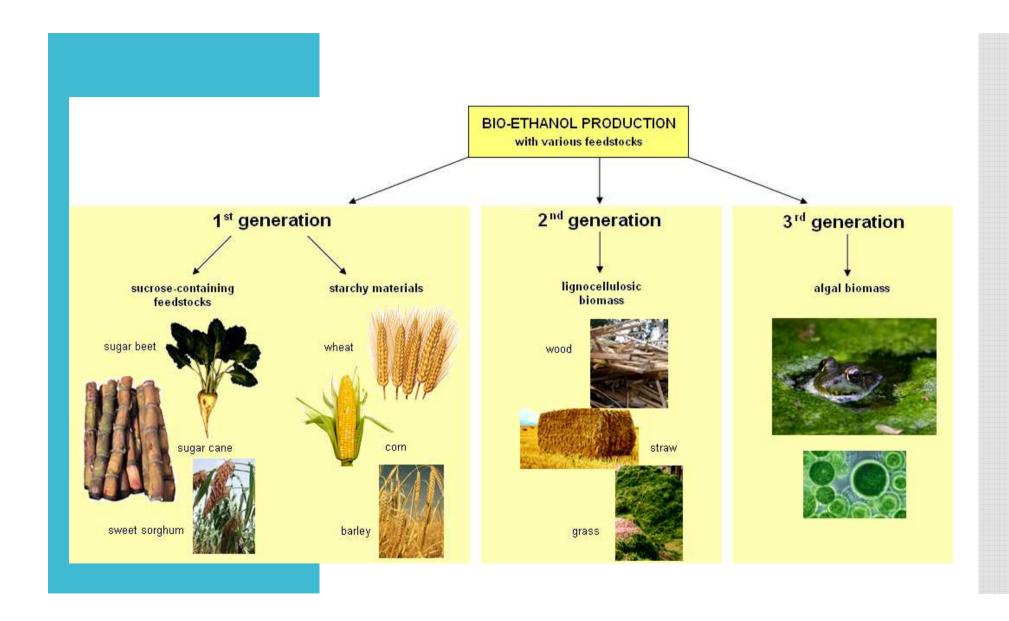
- Obtained with fermentation of sugars
- · C2H5OH
- Current applications:

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Compared to gasoline

Advantages

- higher octane number
- broader flammability limits
- higher flame speeds
- higher heats of vaporization
- higher compression ratio
- shorter burn time

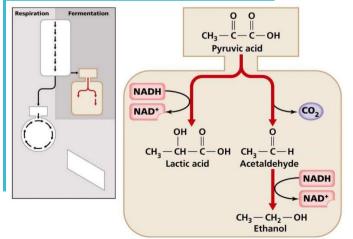

Disadvantages

- lower energy density
- its corrosiveness
- low flame luminosity
- lower vapour pressure (difficult for cold starts)
- miscibility with water
- toxicity to ecosystems

Properties of ethanol, compared to other alcohol fuels (source: Balat, 2007)

Fuel property	Isoctane	Methanol	Ethanol
Cetane number	-	5	8
Octane number	100	112	107
Auto-ignitation temperature (K)	530	737	606
Latent heat of vaporization (MJ/Kg)	0.26	1.18	0.91
Lower heating value (MJ/Kg)	44-4	19.9	26.7

- Hydrated form: 92.6 93.8 wt% direct use as fuel
- Anhydrous form: 99.3 wt% blended with gasoline
- Boiling point: 78.4°C
- Density: 0.789 g/cm³
- Azeotropic point with water: 95 wt% at 1 atm (constant boiling point)



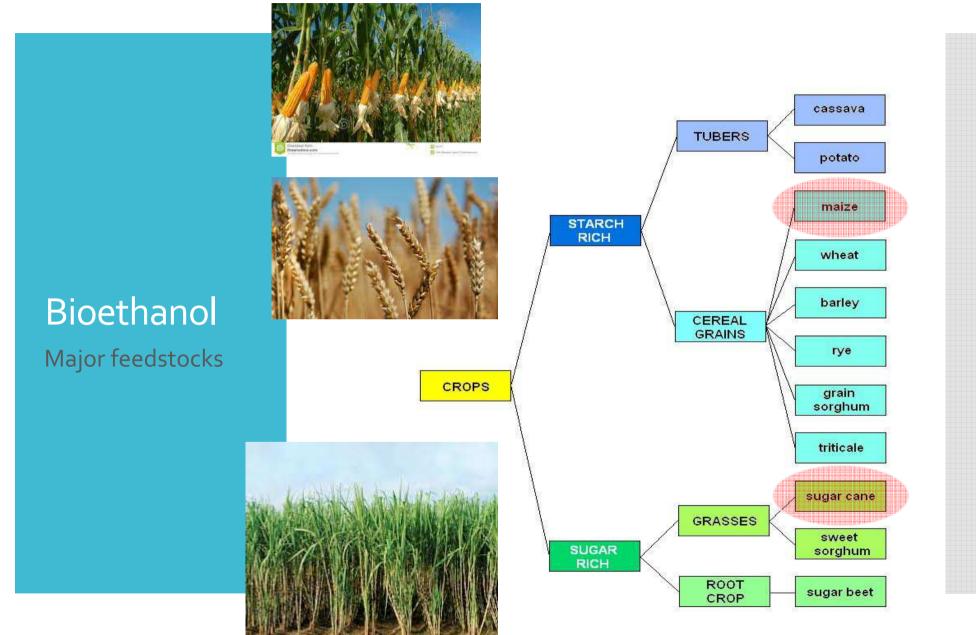
Bioethanol production potential Feedstock (L/ton) Sugar cane 70 Sugar beet 110 Sweet potato 125 Sweet sorghum 60 Bioethanol Potato 110 Cassava 180 Maize 360 Rice 430 Barley 250 Wheat 340

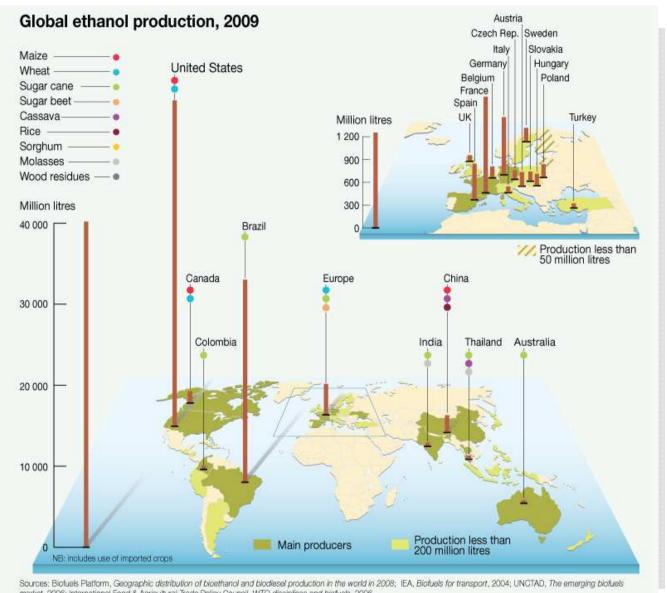
Cellulosic biomass

280

Alcoholic Fermentation

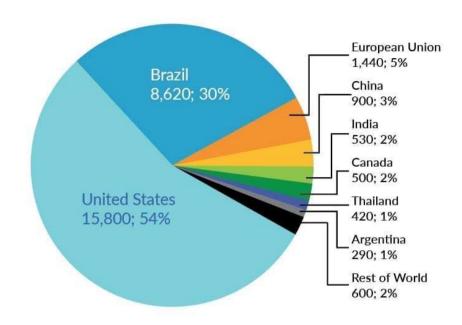
- Anaerobic process that occurs in the cytoplasm of cells.
- One molecule of glucose is broken down into pyruvate

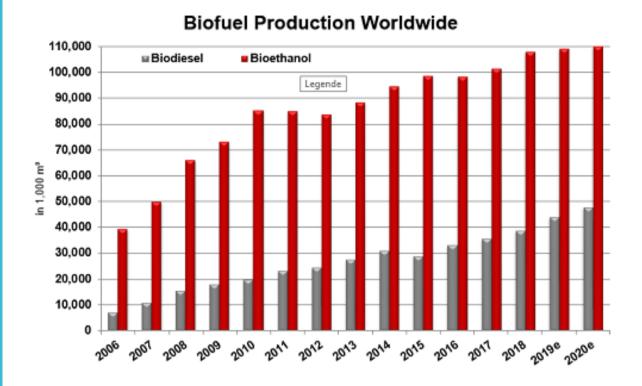

$$C_6H_{12}O_6 \rightarrow 2 CH_3COCOO- + 2 H+$$


...which is then convert into acetaldehyde and carbon dioxide

$$CH_3COCOO - + H+ \rightarrow CH_3CHO + CO_2$$

Subsequently, the acetaldehyde is reduced to ethanol


$$CH_3CHO + NADH \rightarrow C_2H_5OH + NAD+$$


2019 Global Fuel Ethanol Production by Country

(Country, million gallons, share of global production)

Source: RFA analysis of public and private data sources

Source: https://ethanolrfa.org/exports-and-trade/

Hypothetical potential for ethanol from principal cereal and sugar crops

CROP	GLOBAL AREA	GLOBAL PRODUCTION	BIOFUEL YIELD	MAXIMUM ETHANOL	PETROL EQUIVALENT	SUPPLY AS SHARE OF 2003 GLOBAL PETROL USE ¹
	(Million ha)	(Million tonnes)	(Litres/ha)	(Billion litres)	(Billion litres)	(Percentage)
Wheat	215	602	952	205	137	12
Rice	150	630	1 806	271	182	16
Maize	145	711	1 960	284	190	17
Sorghum	45	59	494	22	15	1
Sugar cane	20	1 300	4 550	91	61	6
Cassava	19	219	2 070	39	26	2
Sugar beet	5.4	248	5 060	27	18	2
Total	599			940	630	57

Source: FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The state of food and agriculture, 2008 BIOFUELS: prospects, risks and opportunities.

Note: ... = not applicable. Data presented are subject to rounding.

¹ Global petrol use in 2003 = 1 100 billion litres (Kim and Dale, 2004).

Source: Rajapogal et al., 2007.

<u>USA</u>: bioethanol is mainly used as a 10% petrol additive (E10). Introduction of E15 in January 2011.

Brazil: offered both as a pure fuel (E100) and is blended with conventional petrol with a content of 20 to 25 vol.-%.

Roughly 90% of the new vehicle registrations in Brazil are Flexible Fuel Vehicles (FFVs) which can run on regular petrol, bioethanol or a mixture of both.

<u>Europe</u>: Biofuels directive of 2003 (both the use and the production of bioethanol have been rising steadily in the EU).

"Renewable Energies Directive" (blending rate of 10% in the transport sector by 2020).

About 15 million m³ are expected for 2020.